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A Numerical Method for the Solution of

of Cylindrical Waveguides

H. ORAIZIANDJ. PERINI

the Junction

.4bsfracf-In order to solve the wavesmide iunction KMoblem

numerically, we express the fields in the guides b~ truncate~ modal

expansions and construct an error function which is a measure of the
mean-square error in the matching of the boundary conditions at the

junction. The minimum of this error leads to a set of linear equations
for the modal amplitudes. Offset rectangular waveguides with
amplitude and current excitations are studied. A weighting factor
which multiplies the error contribution due to the magnetic field is
studied, and a criterion for its selection given.

INTRODUCTION

References [1 ]– [4 ] propose essentially the same numerical tech-
nique for the solution of various waveguide discontinuities. Their

approach basically consists of expressing the fields in different sec-

tions of a waveguide by their truncated modal expansions. A set of

linear equations is then obtained for the unknown modal coefficients

by cross multiplying the boundary condition expressions at the

discontinuities by the appropriate mode functions and integrating

over the boundary surface using the orthogonality conditions among

the modes. These methods exhibit a phenomenon of relative con-

vergence first discussed in [1]. It is also shown in [4] that for thin

iris discontinuity, the aperture field modes should be less than the

guide modes, otherwise the method fails. These methods have to

treat the boundary reduction and enlargement separately. The

method described here does not suffer from these shortcomings, lead-
ing to very stable matrices, since the main diagonal elements have

usually the largest magnitudes.

Davies has recently written on the mode-matching technique by

a least-square criterion [5], which parallels our approach. However,

the research reported here has been independent of his study and
has led, we believe, to a simpler procedure for computer imple-
mentation.

THEORETICAL DEVELOPMENT

Consider the junction of two air-tilled cylindrical waveguides as
shown in Fig. 1, and assume, for simplicity, that the second guide is
matched. Note that this is not a requirement imposed by the tech-

nique. We express the fields as

E1 = ~ (Am+ exp (–~~z) + Am– exp (-Y~Z))e~l, 2<0
m

E2 = ~ Bn exp (– roz)e=z
.

Hz = ~ Bp exp (– r~)e=z, 2>0. (1)
u

The guide is excited by an incident mode with amplitude An+
and/or an electric current sheet -7 and/or a magnetic current sheet
M over some portion of the junction surface.

To match the boundary conditions (BC) a so-called error func-

tion (e) is constructed by summing the products of each tangential

BC with its complex conjugate and integrating over the boundary

surface.

~=~ j Uit(H2 — H1) — J 12ds + JI ZLZX(E2 — E1) + Mlzds
.P aP

+J Iivpds+ ~(,)1E’[2~s (2)
.(1)

where a is a weighting factor to balance the contribution of the mag-
netic field to the error, c(1) and c(2) represent the metallic diaphragm
surfaces at the junction toward the first and second guides, respec-

tively, and ap denotes the aperture surface. (The BC on the normal
field components are contained in those of the tangential ones.)

The error becomes zero whenever the BC’S are perfectly matched.
Due to the uniqueness of the fields, the unique minimum of e gives

the set of modes generated by the discontinuity. For a finite number

Manuscript received October 10, 1972; revised June 6, 1973.
The authors are with the Department of Electrical and Computer Engineering,

Syracuse University, Syracuse, N. Y. 13210.

—--d” ‘“ ~’z)—,.
A;—

t —r ‘w
SIDE VIEW FRONT VIEW

Fig. 1, Junction of two cylindrical waveguides.

of modes, the minimum gives the best matching of the BC’s in the
mean-square sense. In contrast, other methods apparently do not
have such a physical criterion.

The minimum of e can be obtained by any minimization scheme.
However, we chose the following procedure. The partial derivatives

of e with respect to the real and imaginary parts of the modal ampli-
tudes vanish at its minimum; equivalently, the partial derivatives

with respect to the modal amplitudes and their complex conjugates

vanish at the minimum [7]. Since e is real, we have (de/dAn–)

= (dc/dAn-”).* (Asterisk denotes complex conjugate.) Consequently,

e may be minimized by equating to zero its partial derivatives with

respect to the conjugate of the modal amplitudes only.

We may obtain this set of linear equations directly from the

boundary condition expressions without actually constructing e in
(2) by the argument outlined below. The tangential boundary con-

ditions may be written as

where nz=l,2, . . . ,Nand~=l,2, . . . ,Parecolumn indices. The
first and second rows are due to the BC’S on the H and E fields; the

third and fourth rows are due to the vanishing of the tangential E
over the diaphragm toward the left and right sides of the junction.
If there were any magnetic conductors at the discontinuity, the

vanishing of the tangential H field should be also included.
Assuming a finite number of modes, the partial derivative of the

error due to the H field (~h) with respect to An– * is obtained by scalar

multiplication of the BC on the H field by <~ a, X?znl*, the con-

j ugate of the coefficient of An– in it, and integrating each term wher-

ever valid. Similarly for the other terms in (f)e/dAn– *). We then see

that (de/dAn-*) may be obtained by scalar premultiplication of (3)

by the conj ugate transpose of the zth column of the coefficient matrix

in (3) corresponding to An-”, and integrating. Similarly for

(13e/dBa-*). Therefore, the partial derivatives of e can be simply ob-

tained by scalar premultiplication of (3) by the conjugate transpose

of the coefficient matrix, and integrating wherever valid over the
junction boundary surface.

Equation (3) may be written as

LV =, f (4)

where L is the coefficient matrix, V’= (A–, B), and ~ is the forcing
function in (3). The above operations maybe concisely denoted by

(L*, L)V = {L*, f)

v = (L’, L)-’(L*,f). (5)

Since the coefficient matrix (L*, L) is Hermitian, it is only necessary
to compute and store its triangular portion. Faster routines are also
available for the inversion of Hermitian matrices [8]. The diagonal

elements of the coefficient matrix are usually larger than the mag-
nitude of the off-diagonal elements which leads to a stable matrix
inversion. The cases of the boundary reduction and enlargement are
both contained in the general formulation, and it has not been neces-
sary to introduce an aperture field. The number of modes in the two

guides also can be selected independently, and their ratio is unim-

portant since c always has a minimum.
In this notation, the error is

c = V*(L*, L)V – V*(L*, f) – (f*, L)V + (f*, f).

Although the method is developed for the junction of two cylin-
drical waveguides, it is equally applicable to any type of discon-

tinuity. The procedure is to write all the boundary conditions over
the interfaces between different regions in a matrix equation as in
(4) and match the BC’S by performing the operations denoted by (5).
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NUMERICAL RESULTS

Computer programs are available for the junction of two offset

rectangular waveguides. The guides may be displaced with respect

to each other, and may have different dimensions. However, their

axes are assumed parallel. There may be amplitude excitation (TE

or TM) and current excitation (constant current sheet over some

aperture). The junction may have any number of apertures.

It is necessary to assume a general field, as the sum of TE and
TM modes, inside the rectangular waveguide. The types of modes

that a discontinuity generates for some excitation may be deduced

by an appropriate arrangement of the elements of (5). For example,

we may show that for dominant TEM, mode excitation, the inductive

discontinuity generates TE~o modes only, and the capacitive discon-
tinuity generates TEln and TM I. modes. The symmetrical inductive

diaphragm generates odd TE~O modes, etc. [10].
Our computer programs can handle many cases not treated in the

literature. We reproduce here some typical examples. In Fig. 2 we

plot the susceptance (13/ ~0) (a/h,) of an inductive metallic strip as a

function of its position d/a over the cross section of the rectangular

waveguide with its width d’/a as the parameter. The symmetric case

when the strip is in the middle and the asymmetric case when it is

located at one corner of the broadside correspond with those ob-

tained from W’azreguide Handbook [9]. Fig. 3 plots the magnitude of

the electric field along x = a/2 = 0.3 for the capacitive junction of

two offset rectangular waveguides. It oscillates over the aperture,

increases sharply at the edges, and tends to zero over the metallic
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Fig. 5. Susceptz.nce and real power—asymmetric capacitive metallic strip.

diaphragms as it expectedly does in the related similar junction of

parallel plate waveguides. In Fig. 4 we plot (Htz –HC1) along y

=b/2 = 0.2 for a waveguide excited by a constant y-directed current
probe across the gap of a zero thickness metallic post. The discon-

tinuity in Hz at the junction should be equal to the y-directed im-
pressed current, which is constant inside the gap and zero every-

where else. The programs can handle many other cases [10].
The offset junction of two parallel plate waveguides has also been

formulated. To check the method, we have studied the case of step-
down discontinuity in detail. The field components satisfy the boun-
dary conditions, as well as the edge condition (I An-] Nw-”la for
large n) [10].

WEIGHTING FACTOR

The weighting factor a provides a degree of freedom in the sense

that its proper choice may give good values for the equivalent

suseeptance with relatively small number of modes. Let

where & and eh denote contributions to the error due to the E and
H fields, respectively.

We now state some properties of . whose proofs may be found in
[10]. The minimum value of e (,min) is a monotone increasing; func-

tion of a. Therefore, <~in cannot be used as a criterion for the selection

of a. Increasing a tends to better the satisfaction of the BC on the
H field (d decreases) and worsen that due to the E field (e’ increases)

and vice versa. ~~in is a decreasing function of the mode numbers.
The conservation of real power may serve as the criterion for the

selection of a at least as far as the equivalent susceptance is con-

cerned, since both are computed from the propagating modal ampli-
tudes [6, p. 19]. The discrepancy in the conservation of real power
(P,) for an asymmetric capacitive strip and its equivalent suscep-

tance are plotted in Fig. 5. For larger number of modes the suscep-
tance is less sensitive to the variation of a as indicated by smaller
slope of its curve. P, also progressively decreases for higher number

of modes. It has a a broad minimum against a, and for the corre-

sponding values of a the susceptance changes only slightly. We may

thus obtain the range of appropriate values of a. The correct value of

the normalized susceptance is 1.16 and occurs at about the minimum

of P,.
It is desirable to obtain an estimate of a for the most accurate

equivalent susceptance, or derive an expression for ~ in (5:) such
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that themodal amplitudes maybe readily obtained without having

to invert (L*, L) for each a.
The matrices in (5) can rewritten with thea dependence made

explicit in the following way:

(Ml + d!f,)l’ = (f,+ afz). (6)

Since MI and M2 are Hermitian, the weighted eigenvalue equation

Mzn< = ~i~IVi

has real eigenvalues, and its eigenfunctions are orthogonal with re-

spect to the weights MI and Mj. Then, substituting

v = x (m

into (6) and multiplying the resulting equation by ~j * to obtain @j,

we get

assuming normalized eigenvectors (divide w by (v, *~lvJ l/?. A sim-
ilar expression can be obtained by, expanding -fl and ~z [1 O]. Once xi

and vi are computed we may obt&n V for different values of a. We
may also obtain an estimate for a by substituting the propagating
modal amplitudes into the expression of the conservation of real

power and imposing approximations I C& I <<1 and/or I a~, I >>1.
Other expressions for Vare given in [10].

CONCLUSION

A numerical method for the solution of waveguide discontinuities
has been developed here which is suitable for computer implementa-

tion and which does not suffer from some of the shortcomings of the

other methods. We have solved many problems numerically which do
not appear in the extant literature. The method can as well handIe

other types of waveguides and discontinuities.
The problem that remains to be solved is that of an easier cri-

terion for the selection of the weighting factor (a) so that the smallest

possible number of modes can be used for a given accuracy. Davies
[5] uses one among several condition numbers of the matrices as the

criterion for the selection of a. Such a condition number may be an

indicator of the stability of the matrix inversion, but its relation to

the equivalent susceptance of the discontinuities and the dominant

modal amplitudes remains obscure.
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The Effect of Surface Metal Adhesive

on Slot-Line Wavelength

JEFFREY B. KNORR AND JUAN SAENZ

Absfract—An investigation of the dependence of slot-line wave-
length upon a thin layer of adhesive between metal and substrate is

described. It is shown that the presence of adhesive will cause an
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Fig. 1. Slot-1ine geometry with adhesive.

TABLE I

THICKNESS OF METALS AND ADHESIVES

rMetallization

actory 1 Oz.

Copper

3M Copper Tape

3M Aluminum Tape

Circuit-Stik
Copper Foil

Evaporated Copper

rhickness of Metal

(Mils)

1.15

1.25

1.95

1.15

0.65

Thickness of Adhesive

(i5ils)

< 1.0

1.9

1.8

2.3

0

increase in wavelength when the dielectric constant of the adhesive

is less than that of the substrate. Experimental results are presented

which show this dependence for a variety of surfaces and adhesives.

A perturbation expression is given which permits correction of ex-
perimental data for comparison with theory when this effect occurs.

I. INTRODUCTION

The analysis of slot line and its microwave applications have been

discussed by a number of authors [1]- [7 ] during the past several

years. In one of these papers, Mariani et al. [5] presented measured

values of slot wavelength for various substrates metallized with both
aluminum sensing tape and copper (electroless plated). Their data

showed that the slot wavelength on substrates metallized with

aluminum sensing tape exceeded the theoretical value. For sub-
strates with copper plated surfaces, the measured wavelength was

(with one exception) somewhat less than the theoretical wavelength.

It was concluded that the adhesive which was present in the case of

aluminum sensing tape decreased the effective dielectric constant and

thereby increased slot wavelength.

Measurements in our laboratory substantiate this conclusion.
The purpose of this short paper is to present more consistent and

extensive data on this effect and to treat the problem using per-

turbation theory.

II. SLOT-WAVELENGTH MIZASUREMENTS

Slot line is constructed by etching a slot utilizing a dielectric sub-
strate which has been metallized on one side only. The metal may be

applied in various ways and in some cases a thin layer of adhesive is
present between the metal and the substrate as illustrated in Fig. 1.
This adhesive may have a significant effect upon the slot wavelength,

A number of experiments were conducted to investigate adhesive
effects. In one series of experiments a Custom Materials Hi-K707-20
(e, =20) substrate was tested using several different methods of
metallization. The substrate was 3-in wide by 0.12 5-in thick, and
slot width was maintained constant in all cases with W/D= 0.53
+ 0.02. The surfaces tested were 1-OZ copper as supplied by the

manufacturer, 3M copper tape (l-in wide), 3M aluminum tape (l-in

wide), and a vacuum deposited copper surface. Table I lists the thick-
nesses of metal and adhesive for all surfaces tested.

Measured values of x’/k for these surfaces are displayed in Fig. 2

along with the theoretical curve from [5]. The vacuum deposited
copper surface is in intimate contact with the substrate and the wave-
length ratio for this surface may be used as a basis for comparison of

experimental measurements. All other surfaces are separated from
the substrate by an adhesive layer and increased wavelength ratios
result.


